Welding Information Center Home | About the Info Center | Links
> Latest news on welding-related study
SEARCH for        
Welding Information Center Document Library
> Welding Basics
> Welding Materials & Other
    Consumables
> Welding Industry Background
> Welding Science & Technology
> Welding Health & Safety
> Welding History
> Welding & the Economy
> Welding Rod Litigation
 
> Important Notice
> Welding Basics

Welding and Farming - The Two Go Hand-In-Hand
SOURCE: The Lincoln Electric Company

Welding and Farming - The Two Go Hand-In-Hand

Welding and FarmingWelding and farming? They have more in common than you might think. In fact, one astute farmer recently noted, "you can't run a farm without welding." This farmer was absolutely correct -- to keep equipment in working order for the critical seasons of planting and harvesting, welding and hardfacing during the off-season are musts. A good working knowledge of these processes also comes in handy when your equipment breaks down during off-hours and you need to quickly fix so you can continue your work.

In this article, we will introduce you to some of the key concepts in welding and hardfacing. When we refer to welding, we are talking about joining metal pieces together to build something. The weld is primarily for strength purposes. Hardfacing, on the other hand, is depositing (by welding with special hardfacing electrodes) wear- resistant surfaces on existing metal components which are under stress to extend their service life. Hardfacing is very commonly done to metal edges that scrape or crush other tough materials -like the blade on a road grader.

Welding and FarmingWe will discuss different applications, ways to identify metallurgy, basic welding procedures and safety. So often, the beginning or novice welder will not get the desired results and assume his welding machine or electrodes are not working properly. In many of these instances, though, the farmer did not take the necessary preparations before welding or has chosen the wrong process, parameters or consumables. In this article, we hope to educate you so that you will know what to use in a few applications and can get the best results. Realize that although a little welding knowledge could help you a lot, there is a lot to becoming a true welding expert, which would cover many books!

Welding Applications

Welding and FarmingFarmers constantly need to repair and modify machinery and equipment to suit their specific needs. This instant ability to alter steel gates, chutes, animal pens, and machinery is such a tremendous benefit to the farmer. Repairing a broken plow or combine in the field by welding it where it broke in minutes can literally save an entire crop. The needs of beef cattle can usually be taken care of with mild steel. Dairy cattle, and virtually their entire milk-handling system require stainless steel. Two similar appearing animals with very different welding needs. But both needing welding to succeed.

Hardfacing Applications

There are many different items that could potentially benefit from hardfacing on the farm. They can basically be put into three "wear" categories - abrasion, impact, and metal-to-metal. Abrasion is one of the most common wears you will see on a farm, in this category falls all earth engaging implements such as tractor buckets, blades, teeth, grain handling products and feed mixers. Under the impact heading you will find equipment used to pound and smash such as crusher hammers. Metal-to-metal refers to wear from steel parts rolling or sliding against each other. Metal-to-metal wear occurs on such items as crane wheels, pulleys, idlers on track-drives, gear teeth and shafts.

Although farmers use welding and hardfacing techniques to rebuild old, worn-out components, Lincoln recommends hardfacing many new components as well. By hardfacing something that is new, it may increase the overall life expectancy of that product.

Basic Metallurgy

Before you can weld or hardface, you first need to identify the parent metal. A good rule of thumb on the farm is that nothing is mild steel. Almost all implements are high strength steels (either high or low alloy) and many are higher carbon steels. But how do you tell the difference? There are a couple of tests that can help.

Welding and FarmingThe first is a magnetic test. If a magnet will stick to the implement then it is likely iron-based. A magnet that will not stick indicates probably a manganese or stainless product. Secondly, try the spark test. If you take a grinder to the item, do you get 30" long, moderately large volume of yellow sparks with just a few sprigs and/or forks indicating mild steel, or do you achieve 25" long, slight to moderate volume of yellow orange sparks, a few forks with intermittent breaks but few if any sprigs to indicate alloy steels or do you get 15" long short, red sparks in large volume with numerous and repeating sprigs, which are telltale signs of a high carbon metal? Another test, the chisel test, will help indicate the type of metal as well. If the metal fractures in large chunks when you take a chisel to it, this means you have cast iron, which can be very difficult to weld unless using special high-nickel electrodes and heat-treating. On the other hand, if the chisel yields corkscrew-like shavings, you are looking at a weldable steel.

What Is the Goal?

Now that you have identified the base material, you need to assess your final goal. In a farm type setting, you need to ascertain whether you need to strengthen the item or prevent wear? If the item in question is a hitch bar on a tractor, the ultimate goal is strength and ductility so that it will not break. WELD IT! If you are talking about an earth-engaging tool, you don't want it to wear out. HARDFACE IT!

Identify What Method to Use

There are three types of welding methods to consider. They differ by speed and cost. The methods are all available to all welding and hardfacing products. However, specific products often have properties that are somewhat unique and not exactly duplicated when utilized by a different process.

Stick Welding

Manual or stick welding requires the least amount of equipment and provides maximum flexibility for welding in remote locations and in all positions. Typically, each rod permits welding for about one minute. In seconds, one can change from mild steel to stainless to hardfacing. In seconds, the electrode can change from small to large diameter for small or large welds. Although simplest, this type of welding takes the greatest operator skill.

Semiautomatic

This type of welding uses wire feeders and continuously fed electrodes. The welding gun is hand-held by the operator. The gun keeps feeding wire as long as the trigger is depressed. This is also much easier to learn than stick welding. This type of setup is becoming more popular on farms, which do more than minimal repair work. Semiautomatic welding increases deposition rates over manual welding because there is no need to stop after burning each rod.

Automatic

Requiring the greatest amount of initial setup, automatic welding has the highest deposition rates for maximum productivity. The welding gun is carried by a mechanized carriage and the welding operator just pushes a start button. This would rarely be found on a farm, but is common at repair centers for heavy equipment that would rebuild your parts for you if the schedule was mutually acceptable.

Welding Procedures

There are five basic steps when welding that must be followed. Welding and Farming

  • Proper Preparation - You first need to ensure that the metal you are welding is clean and dry. Remove rust, dirt, grease, oil and other contaminants by wire brushing. If not removed, these contaminants can cause porosity, cracking and poor weld deposit quality. You must also remove badly cracked, deformed or work-hardened surfaces by grinding, machining or carbon-arc gouging.

  • Proper Preheat - The combination of alloy content, carbon content, massive size and part rigidity creates a necessity to preheat in many welding or hardfacing operations. Most applications require preheating, as a minimum to bring the part to a room temperature of 70ƒ-100ƒ F. Medium to high carbon and low alloy steels may require higher preheat to prevent underbead cracking, welding cracking or stress failure of the part. Preheating can be done with either a torch, oven or electrical heating device. Special temperature-melting crayons can help you verify proper preheat. Too much heat and you can often ruin alloy materials!

  • Adequate Penetration - Correct Welding Procedure - Identify the correct amperage, travel speed, size of weld, polarity, etc. Make sure the completed weld meets your expectations in regards to size and appearance. Welds should be smooth and uniform, free from undercut or porosity. If possible, watch a video showing the type of welding you will be doing so you know what things are suppose to look like.

  • Proper Cool Down - Preheating is the most effective way of slowing the cooling rate of massive or restrained parts, which are inherently crack sensitive. Insulating the part immediately after welding with dry sand, lime, or a glass fiber blanket also helps minimize residual cooling stresses, weld cracking and distortion. Never quench a weld with ice or water as this will lead to greater internal stresses and potentially weld cracking.

  • Post Weld Heat Treatment - Some items may require tempering or heat-treating. What this means is that you warm the item up with your torch after welding and allow it to slowly cool.

Safety

There are a few rules you should follow as you are welding/hardfacing:
Welding and Farming

  • Protect yourself from fumes and gases - Always weld in an open, well-ventilated room and keep your head out of the fumes - especially with hardfacing

  • Wear protective clothing - Protect your eyes and face with a welding helmet designed for arc welding, not just gas welding goggles. In the same manner, protect your body from weld spatter and arc flash with woolen or cotton clothing, a flameproof apron and gloves, and boots. Also make sure to protect others around you from the arc rays as well.

  • Beware of electric shock - Do not touch live electrical parts and make sure that your welding machine is properly grounded. Never weld if you are wet or if your gloves have holes in them.

  • Fire/explosion hazard - Never weld in an enclosed space or near hay, feed bags, gasoline, diesel, hydraulic fluids or anything else that can be within the reach of your welding sparks that would cause a fire or explosion. Never weld alone. Always have a buddy nearby in case of an emergency.

Conclusion

After reading this article, you should be able to reap the benefits of welding in much the same way as you already reap the benefits of the earth on your farm.





NOTICE CONCERNING THIRD PARTY MATERIALS

Many materials on this site were prepared by one or more independent third parties, and we are not responsible for their content. We are providing these materials to you as a convenience We did not investigate or verify the information in any such materials and the inclusion of any material does not imply that we endorse it. The sponsors of this site make no representation as to the accuracy of the information in the materials. The sponsors do not, do not intend to, and expressly disclaim any duty to update or correct such information.
Home | About the Info Center | Links
Copyright © 2004 Welding Information Center. All Rights Reserved.